This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SELENOETHER COMPLEXES OF COPPER(II) - SYNTHESIS, SPECTROSCOPY AND STRUCTURES

Jane R. Black^a; William Levason^a ^a Department of Chemistry, University of Southampton, Southampton, U.K.

To cite this Article Black, Jane R. and Levason, William(1996) 'SELENOETHER COMPLEXES OF COPPER(II) - SYNTHESIS, SPECTROSCOPY AND STRUCTURES', Journal of Coordination Chemistry, 37: 1, 315 – 325 **To link to this Article: DOI:** 10.1080/00958979608023562 **URL:** http://dx.doi.org/10.1080/00958979608023562

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1996, Vol 37, pp. 315-325 Reprints available directly from the publisher Photocopying permitted by license only © 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA Printed in Malaysia

SELENOETHER COMPLEXES OF COPPER(II) – SYNTHESIS, SPECTROSCOPY AND STRUCTURES

JANE R. BLACK and WILLIAM LEVASON*

Department of Chemistry, University of Southampton, Southampton S017 IBJ U.K.

(Received January 23, 1995; in final form February 23, 1995)

The red-brown copper(II) diselencether complexes, $[Cu (L-L)_2][BF_4]_2$ (L-L = MeSeCH₂CH₂SeMe, MeSeCH₂CH₂CH₂SeMe or PhSeCH₂CH₂SePh) have been prepared from copper(II) fluoroborate and the ligands in anhydrous dichloromethane. Some new dithioether analogues are also described. The reaction of MeSeCH₂CH₂SeMe and copper(II) fluoroborate in ethanol led to an unstable dark green substance which appeared to contain both copper(I) and copper(II) and was formulated [Cu(MeSeCH₂CH₂SeMe)₂] [BF₄]_x. The complexes were characterised by analysis, UV-visible and e.p.r. spectroscopy, and magnetic measurements, and cyclic voltammetry has been used to probe the Cu (II)/ Cu(I) redox couples. The complexes are too unstable in solution to obtain crystals for an X-ray study, but structural data has been obtained for both the Cu(II) and Cu(I) complexes by copper K-edge EXAFS studies. Ditelluroethers reduce copper(II) salts to copper(I) complexes.

KEYWORDS: copper(II), selenoether complexes, EXAFS

INTRODUCTION

Copper(II) complexes of thioether ligands have been studied in great detail, and examples with mono-, bi-, and poly-dentate ligands and thiamacrocycles are well known.^{1,2} Studies of blue copper proteins have prompted many studies of copper (II) complexes with a variety of polythioethers and polydentate N/S donors.³ In contrast only one copper(II) complex of a selenoether ligand has been thoroughly characterised, the red-black $[Cu{[16]-aneSe_4}][SO_3CF_3]_2([16]aneSe_4 = 1,5,9,13-tetraselenacyclohexadecane),⁴ and even this decomposes quite rapidly in solution in organic solvents, forming a polymeric copper(I) complex and the organoselenium cation [16-aneSe_4] [SO_3CF_3]_2. We have recently reported⁵ a detailed multinuclear NMR study of various homoleptic copper(I) complexes of sulphur, selenium and tellurium donor ligands, and recount here our studies of some copper(II) analogues.$

EXPERIMENTAL

EPR spectra were measured from powdered samples at 295 K or from frozen solutions (180 K) in nitromethane on a Bruker ECS106 and referenced to DPPH. Other physical measurements were made as described previously.⁶ EXAFS data at the Cu and Se K-edges were collected in transmission mode on station 7.1 at the Daresbury

Downloaded At: 16:21 23 January 2011

^{*}Author for correspondence.

Synchrotron Radiation Source from samples diluted with BN. Details of the data collection and treatment are described elsewhere.⁷ The copper(II) samples used for EXAFS studies were freshly prepared (<48 h) and were stored at 0°C until required. The copper(I) complexes⁵ and the ligands⁸ were made as described elsewhere.

The syntheses were all carried out under a dry N_2 atmosphere. All products were stored under N_2 in a freezer.

$[Cu{MeS(CH_2)_2SMe}_2] (BF_4)_2$

2,5-Dithiahexane, MeS (CH₂)₂SMe (0.519 g, 4.25 mmol) was added dropwise to a solution of Cu(BF₄)₂·4H₂O (0.567 g, 1.83 mmol) in 10 cm³ ethanol. A dark red-brown precipitate was formed immediately which was filtered off, washed with ethanol (2×10 cm³) and dried *in vacuo*. Yield: 0.68 g (77%).

$[Cu{PhS(CH_2)_2SPh}_2] (BF_4)_2$

A solution of Cu $(BF_4)_2 \cdot 4H_2O(0.627 \text{ g}, 2.03 \text{ mmol})$ in 2,2-dimethoxypropane (5 cm³) and CH₂Cl₂ (10 cm³) was heated to reflux (colour change blue to green) then cooled in an ice bath. PhS(CH₂)₂SPh (1.00 g, 4.06 mmol) in 10 cm³ CH₂Cl₂ was added dropwise. The solution was evaporated to a dark brown oily residue which was triturated with pentane (4×15 cm³) giving the solid which was filtered off and dried *in vacuo*. Yield: 1.14 g (77%).

$[Cu{MeSe(CH_2)_2SeMe}_2] (BF_4)_2$

A solution of $Cu(BF_4)_2 \cdot 4H_2O(0.193 \text{ g}, 0.62 \text{ mmol})$ in 2, 2-dimethoxypropane (5 cm³) and anhydrous CH_2Cl_2 (10 cm³) was heated to reflux, giving a colour change from blue to green. The solution was cooled in a CCl_4 slush-bath (- 24°C), stirred vigorously, and MeSeCH₂CH₂SeMe (0.277 g, 1.28 mmol) added dropwise, when a dark-brown precipitate formed immediately. The solvent was decanted off, and the solid dried under vacuum, while cooled in the slush bath.

$[Cu{MeSe(CH_2)_2SeMe}_2] (BF_4)_x]$

Cu(BF₄)₂·4H₂O (0.362 g, 1.17 mmol) in 2, 2-dimethoxypropane (5 cm³) was heated to reflux. Anhydrous ethanol (10 cm³) was added, the mixture was cooled in ice, and MeSe (CH₂)₂SeMe (0.563 g, 2.61 mmol) was added dropwise. A dark green precipitate formed immediately, which was filtered off, washed with anhydrous ethanol (5 cm³), and then with anhydrous diethyl ether (10 cm³), and dried *in vacuo*. Yield: 0.35 g.

$[Cu{PhSe(CH_2)_2SePh}_2] (BF_4)_2$

A solution of $Cu(BF_4)_2 \cdot 4H_2O$ (0.145 g, 0.4 mmol) in 2, 2-dimethoxypropane (5 cm³) and anhydrous CH_2Cl_2 (15 cm³) was heated to reflux (colour change blue to green) then cooled in an ice bath. A solution of PhSe(CH_2)₂SePh (0.331 g, 0.97 mmol) in anhydrous CH_2Cl_2 (5 cm³) was added. The solution was evaporated to an oily residue which was triturated with anhydrous ether (2×10 cm³). The dark brown solid was dried under vacuum. Yield: 0.28 g (65%).

$[Cu{MeS(CH_2)_3SMe}_2] (BF_4)_2$

A solution of Cu(BF₄)₂·4H₂O (0.345 g, 1.12 mmol) in 2, 2-dimethoxypropane (5 cm³) and anhydrous CH₂Cl₂ (10 cm³) was heated to reflux (colour change blue to green) then cooled in an ice bath. 2, 6-Dithiaheptane, MeS (CH₂)₃SMe (0.350 g, 2.57 mmol) was added dropwise and the solvent removed *in vacuo*. The residue was repeatedly triturated with ice cold anhydrous diethyl ether. The resulting dark brown solid was dried under vacuum. Yield: 0.38 g (67%).

$[Cu{MeSe(CH_2)_3SeMe}_2] (BF_4)_2$

A solution of $Cu(BF_4)_2 \cdot 4H_2O(0.158 \text{ g}, 0.51 \text{ mmol})$ in 2,2-dimethoxypropane (5 cm³) and anhydrous CH_2Cl_2 (15 cm³) was heated to reflux (colour change blue to green) then cooled in an ice bath. 2,6-Diselenaheptane, $MeSe(CH_2)_3SeMe(0.263 \text{ g}, 1.14 \text{ mmol})$ was added dropwise. The resulting dark brown solution was evaporated to an oily residue and 15 cm³ anhydrous diethyl ether was added. The mixture was stored under N₂ in a freezer for 24h then the ether decanted and the dark brown solid dried *in vacuo*.

$[Cu{MeS(CH_2)_2SMe} Cl_2]$

MeS (CH₂)₂SMe (0.495 g, 4.05 mmol) was added dropwise to a solution of CuCl₂ (0.229 g, 1.70 mmol) in methanol (15 cm³) while cooling the reaction vessel in ice. The resulting dark green precipitate was filtered, washed with cold methanol (5 cm³) and dried *in vacuo* Yield: 0.20 g (46%).

RESULTS AND DISCUSSION

Dithioethers

The homoleptic dithioether complexes $[Cu(MeSCH_2CH_2SMe)_2Y_2]$ (Y = ClO₄, BF₄) which have *trans* tetragonal octahedral geometry with weak anion coordination in the solid state, have been studied in considerable detail.⁹⁻¹¹ Since the perchlorate is explosive,⁹ we used the tetrafluoroborate complex as a model for the present study, and our data (Tables 1–3) are in good agreement with the literature. It has been suggested¹¹ that the differences in uv-visible and e.p.r. spectra between the solid and solutions in organic solvents, are due to thioether ligand dissociation. An alternative explanation of the differences, is due to the change in geometry from tetragonal octahedral in the solid to four-coordinate in polar solvents. In contrast both the uv-visible and e.p.r. spectra of $[Cu(PhSCH_2CH_2SPh)_2]$ [BF₄]₂ are effectively the same in both the solid and in polar solvents, and suggest that four-coordinate copper is present in the solid also (see Figure 1).

The reaction of Cu[BF₄]₂·4H₂O with MeS(CH₂)₃SMe in dry CH₂Cl₂ gave an unstable brown solid, [Cu(MeS (CH₂)₃SMe)₂] [BF₄]₂ which decomposed rapidly to Cu(I) in polar solvents. Repeated attempts to isolate homoleptic copper(II) complexes of PhS(CH₂)₃SPh or Me₂S produced intractable brown oils. The uv-visible spectra of these oils were very similar to those of the isolated complexes, as was the e.p.r. spectrum of the Me₂S product (the oil from PhS(CH₂)₃SPh was

Complex	Colour	C% ^{<i>a</i>}	H%	μ/B.M.	E _e ^b /V
[Cu(MeSCH ₂ CH ₂ SMe) ₂] [BF ₄] ₂	red-brown	19.7(19.9)	4.1(4.2)	$2.0^{c} 1.7^{d}$	1.07 (1.07)
Cu(PhSCH-CH-SPh), [BF4],	dark brown	46.4(46.1)	4.1(3.9)	-	1.13 (0.97)
[Cu(MeSCH ₂ CH ₂ CH ₂ SMe) ₂]	dark brown	23.9(23.6)	4.6(4.7)	-	1.09 (1.09)
$[Cu(MeSeCH_2CH_2SeMe)_2]$ IBE_1	dark brown	14.6(14.4)	3.2(3.0)	1.95 ^d	- (1.02)
"[Cu(MeSeCH ₂ CH ₂ SeMe) ₂]	dark green	15.6(14.4) ^e	3.3(3.0)	0.73 ^{d,f}	-
$\begin{bmatrix} Cu(MeSeCH_2CH_2CH_2SeMe)_2 \end{bmatrix}$	dark brown	17.7(17.2)	3.7(3.5)	1.6 ^c	0.81 (0.80)
$[Cu(PhSeCH_2CH_2SePh)_2] [BF_4]_2 [Cu(MeSCH_2CH_2SMe)Cl_2]$	dark brown dark green	36.8(36.7) 19.0(18.7)	3.0(3.1) 4.0(3.9)	$\frac{1.8^{c}}{1.7^{d}}$	1.05 (1.02) 0.65

Table 1 Selected physical data

^aCalculated values in parenthesis. ^bcyclic voltammetric data. Nitromethane solutions containing $[NBu_4]$ [BF₄], scan rate 100 mV sec⁻¹, potentials vs the Fc/Fc⁺ couple at + 0.40 V. Potentials in parenthesis measured starting from the copper(I) analogue also in nitromethane. ^c±0.05 B.M. in MeNO₂ by the Evans method. ^dSolid Gouy method. ^e calculated figures are for the Cu(II) formulation; for Cu(I) C, 16.5, H 3.5%. ^fMagnetic moment calculated on M. Wt. of Cu(II) complex (669.2).

Table 2 UV-visible data

Compound		$\frac{E_{max}^{a}}{(\epsilon_{mol}^{a}/dm^{3}cm^{-1}mol^{-1})}$	$E_{max}^{b}/10^3 \text{ cm}^{-1}$
$[Cu(MeSCH_2CH_2SMe)_2] [BF_4]_2$	MeCN	37.5(sh), 25.1(2290), 16.3(190)	ca 41.0(sh), 22.5, 18.2(sh)
	Me ₂ CO	27.2(580), 23.5(770), 18.0(sh)(105)	10.2(0.1)
	MeNO ₂	23,1(4850), 17,9(650)	
[Cu(PhSCH ₂ CH ₂ SPh) ₂] [BF ₄] ₂	MeCN	39.2(13240), 29.9(1200),	38.3, 25.0, 20.8,
		25.3(750), 20.7(480)	37.5
	CH_2Cl_2	29.3(1145), 25.1(720),	30.6, 25.0, 20.7(sh) ^d
		21.1(490)	
$[Cu(MeSCH_2CH_2CH_2SMe)_2] [BF_4]_2$	MeCN ^c	24.4(370), 21.0(sh),	40.5, 33.3, 20.9
		17.4(sh)	
	$CH_2Cl_2^c$	32.9, 24.3, 20.6,	
		17.3(sh)	
	MeNO ₂	24.2(435), 21.0(sh),	
		17.4(sh)	20 7 21 0 10 5(1)
$[Cu(MeSeCH_2CH_2SeMe)_2]$ [BF ₄] ₂	MeNO ₂ °	21.3, 18.5	39.7, 21.9, 18.5(sh),
WC (M-S-CH CH S-M-)) IDE 1 "		21.7.19.5(-1)	ca = 15.4(sn)
$[Cu(MeSeCH_2CH_2SeMe)_2]$ [BF ₄] _x	CH_2Cl_2	21.7, 18.5(sn)	39.7, 24.0(sn), 21.0,
Cu(MaSaCH CH CH SaMa) 1 IBE 1	MaCN	24 7(415) 20 5(ch)	283 278 20.6(ch)
$\left[\operatorname{Cu}(\operatorname{WeseCH}_2\operatorname{CH}_2\operatorname{CH}_2\operatorname{SeWe})_2\right]\left[\operatorname{BF}_4\right]_2$	NICCIA	17 4(sh)	56.5, 27.6, 20.0(51)
	CH_CL	33.3(sh) 24.3(460)	
		21.1(sh), 17.5(sh)	
[Cu(PhSeCH_CH_CH_SePh)_] [BF4]_	MeCN	36.3(12100), 25.0(1500).	37.8. 20.7
		21.0(885)	
	MeNO ₂	24.7(1560), 20.6(1040),	
	2	17.6(sh)	
	CH ₂ Cl ₂	24.7(1440), 20.4(970),	
	2 1	17.3(sh)	

^aIn solvent specified. ^bDiffuse reflectance diluted with MgO. ^cComplex decomposes rapidly, hence meaningful ε_{mol} values were not obtained. ^dDiffuse reflectance diluted with BaSO₄.

Figure 1 UV-Visible spectrum of (a) a freshly prepared solution of $[Cu(PhSCH_2CH_2SPh)_2]$ [BF₄]₂ in MeCN, (b) diffuse reflectance spectrum of the same complex diluted with BaSO₄.

e.p.r. silent) strongly suggesting that CuS_4 moieties may be present, but in the absence of analytically pure solids, the studies were not pursued.

Diselenoethers

A variety of potential routes to copper(II) selenoethers were explored, including oxidation of the copper(I) analogues⁵ suspended in HBF₄ with HNO₃, or with NOBF₄ in MeCN, but without success. The red-brown [Cu(MeSe(CH₂)_nSeMe)₂] [BF₄]₂ (n = 2 or 3) and [Cu(PhSeCH₂CH₂SePh)₂] [BF₄]₂ were obtained from

Table 5 E.I.K. Uala	E.P.R. da	23 E.P.R	. data
---------------------	-----------	----------	--------

Compound	Conditions	g value ^a
[Cu(MeSCH ₂ CH ₂ SMe) ₂] [BF ₄] ₂	solid 295K	g ₁ 2.18, g ₂ 2.12, g ₃ 2.11
	MeNO ₂ glass 180K	g ₁ 2.10, g ₂ 2.02, g ₃ 1.96
$[Cu(PhSCH_2CH_2SPh)_2]$ [BF ₄] ₂	solid 295K	g _{av} 2.20
	MeNO ₂ glass 183K	g _{av} 2.07
$[Cu(MeSCH_2CH_2CH_2SMe)_2]$ [BF ₄] ₂	solid 295K	no spectrum ^b
[Cu(MeSeCH ₂ CH ₂ SeMe) ₂] [BF ₄] ₂	solid 295K	g_1 2.11, g_2 2.04
"[Cu(MeSeCH ₂ CH ₂ SeMe) ₂] [BF ₄],"	solid 295K	g _{av} 2.06
[Cu(MeSeCH ₂ CH ₂ CH ₂ SeMe) ₂] [BF ₄] ₂	solid 295K	g _{av} 2.15
[Cu(PhSeCH ₂ CH ₂ SePh) ₂] [BF ₄] ₂	solid 295K	g _{av} 2.00
[Cu(MeSCH ₂ CH ₂ SMe)Cl ₂]	solid 295K	g _{av} 2.08
	MeNO ₂ glass 180K	g _{av} 2.10

aX-band spectra calibrated with DPPH. bNo resonance observed, presumably due to unfavourable relaxation.

 $Cu[BF_4]_2 \cdot 4H_2O$ and the appropriate ligand in dry CH_2Cl_2 with 2,2-dimethoxypropane as the dehydrating agent. Copper(II) trifluoromethanesulphonate and $[Cu (MeCN)_4] [BF_4]_2$ were also used, but were less successful than the fluoroborate. If the reaction of $Cu(BF_4)_2$ and $MeSeCH_2CH_2SeMe$ was conducted in ethanol, a green product was obtained which is described in more detail below.

These complexes are markedly less stable than the thioether analogues and decompose to copper(I) fairly rapidly in solution, and more slowly in the solid state, although samples can be kept for some time in a freezer. The uv-visible spectra are similar in solution and in the solid state (Table 2), although the poor stability in many solvents limits the data obtainable. The c.p.r spectrum of solid [Cu (MeSeCH₂CH₂SeMe)₂] [BF₄]₂ (see Figure 2) showed two g values (Table 3), but for the others only single isotropic signals were observed. By comparison with the dithioethers, these data suggest that [Cu(MeSeCH₂CH₂SeMe)₂][BF₄]₂ may be distorted octahedral in the solid, but the other diselenoether complexes contain four-coordinate copper both in solution and in the solid state. Brown oils were obtained from similar reactions of $Cu(BF_{4})_2 \cdot 4H_2O$ and PhSeCH₂CH₂CH₂SePh or Me₂Se; again the spectroscopic data are consistent with CuSe₄ species, but full characterisation was not obtained.

$[Cu(MeSeCH_2CH_2SeMe)_2]$ [BF₄]_x

In contrast to the reaction in CH_2Cl_2 described above, addition of MeSeCH₂CH₂SeMe to Cu(BF₄)₂·4H₂O/2, 2-dimethoxypropane in ethanol gave an initial dark brown precipitate, which rapidly turned dark green. Analytical data on several green samples indicated an approximate 2:1 ligand:Cu ratio. This solid decomposed rapidly to copper(I) when dissolved in MeCN or MeNO₂, but in CH₂Cl₂ solution it was stable enough for a uv-visible spectrum, which was very similar in profile to that obtained from the brown Cu(II) analogue. The diffuse reflectance spectra of the brown and green forms are similar but not identical (Table 2). The e.p.r. spectrum of the green solid shows an isotropic spectrum consistent with the presence of a four-coordinated Cu(II) Se₄ chromophore. However the magnetic moment of the green complex was *ca* 0.73 B.M, well below the 1.96 B.M. found for the brown [Cu(MeSeCH₂CH₂SeMe)₂] [BF₄]₂ (Table 1). At this point the

Figure 2 E.P.R. spectrum of solid [Cu(MeSeCH₂CH₂SeMe)₂] [BF₄]₂ at room temperature.

analogy with the Cu-MeSCH₂CH₂SMe system studied in great detail by Olmstead et al.,¹⁴ was clear. In this system, in addition to the red-brown Cu(II) complex [Cu(MeSCH₂CH₂SMe)₂] [ClO₄]₂ and the white Cu(I) [Cu(MeSCH₂CH₂SMe)₂] [ClO₄], a dark-green mixed-valence material [Cu(MeSCH₂CH₂SMe)₂] [ClO₄]_{4/3} was isolated and structurally characterised. The spectroscopic signatures of the copper (II) centres in the pure copper(II) complex and in the mixed-valence material were characteristic but not greatly different.¹⁴ The considerably reduced stability of the copper(II)-diselencether complexes, makes a full characterisation of the dark-green product difficult, but the presence of a mixed valence Cu(I)-Cu(II) species which we formulate $[Cu(MeSeCH_2CH_2SeMe)_2]$ $[BF_4]_x$ is consistent with the data. The material is too unstable to permit recrystallisation, and it is likely that x may vary from sample to sample. The brown solid [Cu(MeSeCH₂CH₂SeMe)₂] [BF₄]₂ decomposes on standing to the white copper(I) complex, and the green mixed-valence material is formed only in the presence of solvents, which would be consistent with co-crystallisation of four-coordinate Cu(I) and Cu(II) diselenahexane cations to form this material (cf ref. 14).

Ditelluroethers

The reaction of either $MeTe(CH_2)_3TeMe$ or $PhTe(CH_2)_3TePh$ with Cu $[BF_4]_2 \cdot 4H_2O$ in dry ethanol or CH_2Cl_2 and with 2,2-dimethoxypropane as dehydrating agent, produced orange solutions, from which the known copper(I) complexes⁵ [Cu(L-L)₂]BF₄ were isolated, usually in impure form contaminated with intractable oxidation products of the ligands. The products were e.p.r. silent consistent with the presence of only copper(I). Insoluble orange materials of approximate 1:1 stoichiometry ([Cu(L-L)Cl]) were formed from reaction of the ditelluroethers with copper(II) chloride in acetone or CH_2Cl_2 . These substances gave only low mass ions in the FAB mass-spectrum, and in view of their insolubility in common organic solvents were not further studied. Despite many attempts we have no evidence that copper(II)-telluroether complexes form.

Halide Systems

Copper(II) chloride forms 1:1 complexes with dithioethers including $[CuCl_2(L-L)]$ where L-L = MeSCH₂CH₂SMe,¹² BuSCH₂CH₂SBu,¹³ and EtSCH₂CH₂SEt.¹⁴ The $[Cu(MeSCH_2CH_2SMe)Cl_2]$ complex was prepared in the present work. Although a green solid was produced from CuCl₂ and MeSeCH₂CH₂SeMe, it was not obtained in a pure state.

Electrochemistry

Cyclic voltammograms were run for both the copper(II) complexes and the copper(I) analogues in various solvents and at scan rates of 200, 100 and 50 mV sec⁻¹. Nitromethane was found most suitable for the copper(II) complexes and was subsequently used for the copper(I) complexes. Starting with the copper(II) complexes, *quasi*-reversible Cu(II)-Cu(I) couples were observed in nitromethane solutions containing [NBu₄] [BF₄] (see Figure 3) (Table 1) essentially independent of scan rate, typically with the peak heights on the reduction somewhat smaller than those on the (reverse) oxidation sweep. We attribute this to some spontaneous

Figure 3 Cyclic Voltammograms obtained from (a) $[Cu(MeSeCH_2CH_2CH_2SeMe)_2]$ $[BF_4]_2$ in MeNO₂, and (b) $[Cu(MeSeCH_2CH_2CH_2SeMe)_2]$ $[PF_6]$ also in MeNO₂.

decomposition of the copper(II) complexes in solution prior to the measurements. This behaviour was more marked in the diselencether complexes than the dithioethers, and $[Cu(MeSeCH_2CH_2SeMe)_2][BF_4]_2$, in particular, proved so prone to decomposition that useful data were not obtained. For $[Cu(MeSeCH_2CH_2SMe)_2]^{2+/+}$ the couple was confirmed as a one-electron process by coulometry, but coulometric studies of the diselencether systems were not successful due to the instability of the copper(II) complexes in solution. Cyclic voltammetry on the copper(I) ditelluroether complexes showed complex irreversible oxidations.

a

b

EXAFS Studies

Due to solution instability of the selenoether complexes, crystals suitable for an X-ray study could not be grown. However structural data have been obtained for both copper(I) and copper(II) selenoethers using Cu K-edge EXAFS (Extended X-ray Absorption Fine Structure). The results are summarised in Table 4 and Figure 4 shows a representative example. Similar EXAFS data were also obtained for one copper(I) telluroether, and for the new copper(II) thioether complexes, with $[Cu(MeSCH_2CH_2SMe)_2]$ [BF₄]₂ which has been the subject of a single-crystal X-ray study,¹⁰ serving as a 'model' complex, used to check the data collection and treatment. For [Cu(MeSCH₂CH₂SMe)₂] [BF₄]₂ the Cu K-edge EXAFS data refined to place d(Cu-S) at 2.32 Å which can be compared with the crystallographic value¹⁰ of 2.317 Å(av). The X-ray structure also revealed long Cu \cdot FBF₃ contacts at ca 2.58 Å completing a very distorted octahedron, but these were not evident in the EXAFS data; two weak back-scattering fluorines at relatively long distances would not be expected to contribute significantly to the EXAFS amplitude. The d(Cu-S) at 2.29 Å in $[Cu(PhSCH_2CH_2SPh)_2]$ [BF₄]₂ was 0.03 Å shorter than the value in the dithiahexane complex, consistent with the deduction from the spectroscopic data that [Cu(PhSCH₂CH₂SPh)₂] [BF₄]₂ contains four-coordinate copper.

In the two copper(I) and two copper(II) diselencether complexes examined, the d(Cu-Se) distances were not significantly different at *ca* 2.39 Å (Table 4). This is tentatively interpreted in terms of four-coordinate geometries for all four complexes. Although by analogy with the dithioethers, any Cu⁻⁻FBF₃ contacts in a tetragonal octahedral geometry might not be evident in the EXAFS, the increase in coordination number of the copper would be expected to lead to longer Cu-Se bonds. Whilst one must be careful extrapolating from macrocyclic complexes to acyclic analogues, it is notable that in the [Cu ([16]-aneSe₄)] [BF₄]₂ which contains six-coordinate copper, d(Cu-Se) is 2.46Å (av).⁴ The EXAFS data on

Table 4 Cu K-edge EXAFS and relevant crystallographic data.

Compound	d(Cu-E)/Å ^a	$2\sigma^2/Å^{2b}$	F.I. ^c	R. <i>^d</i>	Ref.
$[Cu(MeSCH_2CH_2SMe)_2] [BF_4]_2$	2.322(2)	0.0092(3)	3.4	24.5	е
[Cu(PhSCH ₂ CH ₂ SPh) ₂] [BF ₄] ₂	2.290(2)	0.0175(3)	2.1	19.5	e
"[Cu(MeSeCH ₂ CH ₂ SeMe) ₂] [BF_4] _x "f	2.382(1)	0.0124(1)	0.7	12.4	e
[Cu(MeSeCH ₂ CH ₂ CH ₂ SeMe) ₂] [BF ₄] ₂	2.401(1)	0.0141(1)	1.2	17.1	e
[Cu(PhSeCH ₂ CH ₂ SePh) ₂] [BF ₄] ₂	2.389(1)	0.0130(1)	0.4	8.9	e
[Cu(MeSeCH ₂ CH ₂ SeMe) ₂] [PF ₆]	2.385(1)	0.0137(1)	0.8	14.1	е
[Cu(MeSeCH ₂ CH ₂ CH ₂ SeMe) ₂] [PF ₆]	2.391(2)	0.0153(1)	2.2	23.0	e
[Cu(PhTeCH ₂ CH ₂ CH ₂ TePh) ₂] [PF ₆]	2.550(1)	0.0181(2)	3.5	23.9	e
Cu(MeSCH2CH2SMe)Cl218	2.335(3)	0.0052(5)	2.2	22.2	e
[Cu(MeSCH ₂ CH ₂ SMe) ₂] [BF ₄] ₂	2.317(2)av	$[CuFBF_3 = 2.579(5)]$			10
[Cu(MeSCH ₂ CH ₂ SMe) ₂] [ClO ₄] ₂	2.337(5)av	$[CuOClO_3 = 2.549(3)]$			11
Cu(MeSCH ₂ CH ₂ SMe) ₂] [ClO ₄] _{4/3}	2.27(2)				11
[Cu(EtSCH ₂ CH ₂ SEt) ₂] [BF ₄]	2.303(5)av				10
[Cu(MeSCH ₂ CH ₂ SMe) ₂] ClO ₄	2.263(6)				11
$[Cu([16]aneSe_4)]$ $[SO_3CF_3]_2$	2.457(2)av	$[CuOSO_2CF_3 = 2.464(5)]$			4

^aStandard deviations in parenthesis. Note that systematic errors in bond distances arising from data collection and analysis procedures are $ca \pm 0.02$ Å for well defined shells. ^bDebye-Waller factor. ^cFit index defined as $\Sigma_i[(\chi^T - \chi^E)k_3^i]^2$. ^dR factors defined as $[\int (\chi^T - \chi^E)k^3dk/\int \chi^E k^3dk] \times 100\%$. ^eThis work. ^fSe K-edge data d(Se-C) = 1.951(4)Å, $2\sigma^2 0.0026(7)$, d(Se-Cu) 2.381(4)Å $2\sigma^2 0.0085(5)$, F.I. = 8.1, R = 30.0. ^gCu-Cl 2.218(2)Å $2\sigma^2 = 0.0053(4)$.

Figure 4 Background subtracted Copper K-edge EXAFS spectrum of $[Cu(PhSeCH_2CH_2SePh)_2]$ [BF₄]₂, and the corresponding Fourier transform. (Full line – experimental data, broken line – theoretical fit).

"[Cu(MeSeCH₂CH₂SeMe)₂] [BF₄]_x" placed d (Cu-Se) at 2.38Å. We note that the X-ray structure of [Cu(MeSCH₂CH₂SMe)₂] [ClO₄]_{4/3} did not distinguish Cu(II) and Cu(I) sites.¹⁴ Selenium K-edge EXAFS data were also recorded for [Cu(MeSeCH₂CH₂SeMe)₂] [BF₄]_x and showed Se-C (1.95Å) and Cu-Se (2.38Å) as the only statistically significant features, although we note that the latter distance is in excellent agreement with the value determined from the Cu K-edge data.

The d(Cu-Te) bond length of 2.55Å found in $[Cu(PhTeCH_2CH_2CH_2TePh)_2][BF_4]$ is reasonable when compared with the average value¹⁴ of 2.58Å in $[Cu(Et_2Te)Cl]$ which is a chain polymer with asymmetric tellurium bridges.

SUMMARY

This study has shown that homoleptic copper(II) complexes with acyclic selenoethers can be prepared, and has provided spectroscopic and structural characterisation on three examples. In comparison with the dithioether analogues, these diselencether complexes are surprisingly unstable, reducing very readily to copper(I). The trend continues down group 16, in that all attempts to isolate copper(II) ditelluroethers have been unsuccessful. Evidence for a mixed-valence diselencether species has also been obtained.

Acknowledgements

We thank the EPSRC and the Director of the Daresbury Laboratory for the provision of facilities for the EXAFS studies, and the University of Southampton for support.

References

- 1. S.G. Murray and F.R. Hartley, Chem. Rev., 81, 365 (1981).
- 2. A.J. Blake and M. Schroeder, Advan. Inorg. Chem., 35, 1 (1990).
- 3. N. Kitajima, Advan. Inorg. Chem., 39, 1 (1992).
- R.J. Batchelor, F.W.B. Einstein, I.D. Gay, J-H. Gu, M. Pinto, and X-M. Zhou, J. Am. Chem. Soc., 112, 3706 (1990).
- 5. J.R. Black and W. Levason, J. Chem. Soc. Dalton Trans., 3225 (1994).
- R.A. Cipriano, W. Levason, R.A.S. Mould, D. Pletcher, M. Webster, J. Chem. Soc. Dalton Trans., 2609 (1990).
- 7. W. Levason, R.D. Oldroyd and M. Webster, J. Chem. Soc. Dalton Trans., 2983 (1994).
- D.J. Gulliver, E.G. Hope, W. Levason, S.G. Murray, D.M. Potter and G.L. Marshall, J. Chem. Soc. Perkin Trans. II., 429, (1984); E.G. Hope, T. Kemmitt and W. Levason, Organometallics, 7, 78 (1988).
- 9. E.W. Ainscough, A.M. Brodie and K.C. Palmer, J. Chem. Soc. Dalton Trans., 2375 (1976).
- 10. E.N. Baker and G.E. Norris, J. Chem. Soc. Dalton Trans., 877 (1977).
- 11. M.M. Olmstead, K.W. Musker and R.M. Kessler, Inorg. Chem., 20, 151 (1981).
- 12. C.D. Flint and M. Goodgame, J. Chem. Soc. (A), 2178 (1968).
- B. Cohen, C.C. Ou, R.A. Lalancette, W. Borowski, J.A. Potenza and H.J. Schugar, *Inorg. Chem.*, 18, 217 (1979).
- 14. M.M. Olmstead, W.K. Musker, L.W. Ter Haar, and W.E. Hatfield, Inorg. Chem., 104, 6627 (1982).
- 15. R.K. Chadha and J.E. Drake, J. Organometal. Chem., 286, 121 (1985).